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Abstract: This paper focuses on determining the optimal crop planting scheme. After comparing 
traditional models such as linear programming and stochastic optimization, a modeling approach 
employing a hybrid optimization algorithm and multi-objective optimization strategy is adopted. 
Under the assumption of stable crop yields, planting costs, and sales prices, the model utilizes a 
genetic algorithm (GA) to optimize the allocation of crop planting areas. Additionally, 
reinforcement learning via Q-learning dynamically adjusts crossover and mutation operations to 
enhance the global search capability. By introducing two scenarios—unsalable crops and price 
reductions—and employing penalty functions to manage risks, a multi-objective programming 
model is established. The model is solved using the non-dominated sorting genetic algorithm 
(NSGA) to obtain Pareto optimal solutions, leading to the determination of optimal planting 
schemes for both scenarios. The results demonstrate the model's high profitability and stability 
across different conditions. 

1. Introduction 
The primary focus of this inquiry lies in addressing the multi-objective optimization challenge 

related to rural crop planting, incorporating elements such as uncertainty, crop substitution, and 
complementarity to devise an optimal planting strategy. By accurately modeling various factors like 
crop yields, sales prices, and planting costs, we aim to optimize resource allocation and elevate 
production efficiency. 

In related research, Liang Zhou and his colleagues[1]introduced a unique discrete-time data-
driven predictive sliding mode control (DDPSMC) approach. They designed a nonlinear integral 
terminal sliding mode surface to replace the conventional linear sliding mode function, aiming to 
expedite system error convergence and mitigate chattering. Additionally, S. Iwamoto and 
team[2]proposed a swift reactive power and voltage control method, formulating the AC load flow 
equation in a nonlinear manner while considering both lower and upper bounds. By incorporating a 
desired cost function, they derived a nonlinear programming formulation. Zhe Xu et al.[3]presented 
a Tuaguchi-ANFIS (Tuaguchi-adaptive neural-fuzzy inference system) methodology, utilizing an 
orthogonal experiment matrix to minimize training data requirements. They constructed a rapid 
response mathematical model linking three configuration parameters—fin pitch, fin thickness, and 
the number of oil channels—with two design indices: heat transfer capacity and working weight. 

Furthermore, Tiancai Ma and his co-authors[4]established a comprehensive system model and 
optimization objective for a novel hybrid renewable energy system (HRES). They combined the 
hypervolume method with an algorithm framework to propose an enhanced non-dominated sorting 
genetic algorithm (NSGA-III), addressing the issue of Pareto front degradation due to random 
selection. Meanwhile, Yang Qi and his team[5]devised a path planning algorithm grounded in 
bidirectional Q-learning. By refining the bidirectional Q-learning mechanism and bolstering the Q-
learning initialization process, the algorithm achieved efficient and effective optimization of 

2025 11th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2025) 

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/icmmct.2025.019134



abandoned household appliance recycling routes. This approach facilitated bidirectional updates to 
the state-action value function, originating from both the starting and goal points. 

The determination of optimal crop planting schemes is crucial for maximizing agricultural 
productivity and economic returns. Traditional methods for addressing this problem include linear 
programming and stochastic optimization. However, these approaches often struggle with the 
complexity and dynamic nature of real-world agricultural scenarios, where multiple objectives and 
constraints need to be considered simultaneously. 

Linear programming, for instance, excels in finding optimal solutions under well-defined linear 
relationships but may fail to capture the nonlinearities and uncertainties inherent in agricultural 
systems. Stochastic optimization, while better suited for handling uncertainties, can become 
computationally intensive and may not always guarantee globally optimal solutions. 

In response to these limitations, this paper proposes a novel modeling approach that combines a 
hybrid optimization algorithm with multi-objective optimization strategies. By leveraging the 
exploratory power of genetic algorithms and the adaptive learning capabilities of Q-learning, the 
model aims to identify optimal planting schemes that balance various objectives, such as 
maximizing profit and minimizing risk. In order to verify the feasibility of the algorithm designed in 
this paper, the solution research is carried out based on the data set provided in a competition. 

2. Design of solution method 
2.1. Model Comparison 

Based on the complexity of crop planting scheme optimization, this paper chooses a hybrid 
optimization algorithm (genetic algorithm + reinforcement learning) and a multi-objective 
optimization strategy modeling method. Initially, this paper uses the following three modeling 
methods for preliminary solution. First, the linear programming model works well when dealing 
with a single objective, but its performance is limited when facing multiple objectives, and it is 
difficult to optimize multiple objectives at the same time. Secondly, the stochastic optimization 
model optimizes by simulating uncertainty, but the model does not grasp the global solution well, is 
easy to fall into local optimum, and the convergence speed is slow. Finally, due to the lack of 
adaptive adjustment mechanism, the traditional genetic algorithm has insufficient performance in 
complex multi-objective optimization problems. It is difficult to dynamically adjust the crossover 
and mutation operations, which affects the convergence speed and accuracy. The results show that 
these methods are difficult to take into account the needs of multiple parties when facing multi-
objective optimization, and the effect is not ideal. 

Therefore, this paper chooses a hybrid optimization algorithm (genetic algorithm + 
reinforcement learning) and a multi-objective optimization strategy to solve the problem. The 
innovation is that the crossover and mutation operations are adaptively adjusted by reinforcement 
learning to improve the global search ability and convergence efficiency of the algorithm, and the 
multi-objective optimization strategy is used to balance revenue, stability and resource utilization. 
This makes the model more robust and efficient in complex planting scenarios. 

2.2. Solution based on genetic algorithm 
Genetic algorithm is an optimization algorithm based on the theory of natural evolution, which 

simulates the mechanisms of selection, crossover and mutation in the process of biological 
evolution. The use of genetic algorithm can accurately adjust various production measures, 
maximize the optimization of input, obtain the highest yield and economic benefits, protect the 
ecological environment, and realize the sustainable development of agriculture [2]. The main 
process of the algorithm includes initialization of population, calculation of fitness function, 
selection, crossover and recombination, mutation and generational update. Firstly, the algorithm 
randomly generates initial solutions as a population, evaluates the fitness of each solution, and 
retains good quality solutions into the next generation by selection operation. Then, new solutions 
are generated by crossover and mutation to ensure population diversity. The process iterates until 
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the algorithm converges or a termination criterion is met. In this paper, reinforcement learning is 
used to dynamically adjust the crossover and mutation probabilities to further improve the 
convergence speed and the quality of the solution of the algorithm. 

The detailed flowchart of the genetic algorithm is shown in Fig.1 
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Figure 1 Flowchart of genetic algorithm 

As can be seen from Figure 1, the genetic algorithm mainly includes the following five parts: 
(1) Generation of initial population: When initializing the population, this paper combines the 

information of plot area, plot type and crop suitability to randomly generate the planting area 
allocation scheme of each crop on different plots, while meeting the maximum planting area limit of 
the plot and the rotation demand of each crop. Each individual represents a cropping scheme for a 
crop on each plot. In this paper, in order to visually show the distribution of the initialization 
population, the stacked bar chart is drawn as shown in Fig.2 and Fig.3: 

 
Figure 2 The population is initialized in the flat and dry land 

 
Figure 3 The terrace initializes the population 
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Taking only flat and dry land and terraces as examples, it can be seen from Fig.2 and Fig.3 that 
the crop planting area and the type of crop planted in different plots are significantly different. In 
the flat and dry land (Fig.2), the proportion of crop planting in each block is relatively concentrated. 
The planting area of A1 and A5 is large, while that of A2 and A3 is small. Crop types are mainly 
food crops. In the terrace (Fig.3), the planting area is relatively uniform in general, but the 
distribution of planting crop types in different blocks is different. B6 plot has the largest planting 
area and has many types. 

(2) Fitness function calculation: According to the crop yield, planting cost, selling price and 
other data in the attachment, calculate the total revenue, planting volatility and resource utilization 
efficiency of each individual plan, corresponding to the three objectives in the fitness function. The 
fitness function comprehensively considers these three objectives and is evaluated using the method 
of weighted summation. In this paper, we use Python to calculate the fitness calculation table and 
show the specific values of revenue, volatility and efficiency of each scheme through the fitness 
calculation table. The specific data are shown in Table 1: 

Table 1 Fitness calculation table 

Crop Name Revenue Resource 
efficiency 

Volatility Crops Yield Resource 
efficiency 

Volatility 

Soybean 900 1 0.1 sorghum 3380 1.58 0.18 
Black Bean 3350 1.25 0.12 Millet 3577.5 1.46 0.17 
Red Beans 2950 1.14 0.15 Buckwheat 4050 0.31 0.3 

Green 
Beans 

2100 1 0.08 Pumpkin 3500 3 0.07 

Crawler 
Beans 

2451.25 1.19 0.13 Sweet potato 5150 1.1 0.14 

Wheat 2350 1.78 0.09 Avena sativa 1910 1.05 0.1 
Corn 2500 2 0.2 Barley 1487.5 1.5 0.08 
Grain 2340 1.11 0.1 Rice 2820 0.74 0.05 

(3) Selection: according to the size of the fitness value, the individuals with higher fitness are 
selected to enter the next generation to ensure that the excellent individuals can continue to 
reproduce and improve the quality of the overall population solution. 

(4) Cross-recombination: by simulating the biological genetic process, the partial genes of two 
parent individuals are combined to generate a new offspring individual, so as to enhance the 
diversity of the population and improve the global search ability. In this paper, the simulated binary 
crossover method is used for the crossover operation. Firstly, two individuals with higher fitness are 
randomly selected, and the crossover operation is determined according to the predetermined 
crossover probability. New offspring individuals are then generated based on the weighted 
combination of the two parent solutions. 

(5) Mutation: introduce new solutions by randomly changing some loci in individual genes to 
prevent the algorithm from falling into local optimum. According to the set mutation probability, a 
gene in an individual is randomly selected, and it is randomly adjusted in a small range to generate 
a more diverse population. 

2.3. Genetic Algorithm Incorporating Q-learning Reinforcement Learning Approach 
In this paper, Q-learning reinforcement learning method is used to dynamically adjust the 

crossover and mutation operations in the genetic algorithm to further improve the convergence 
speed and optimization ability of the algorithm. Q-learning continuously adjusts the probability of 
the operations by learning the impact of the crossover and mutation operations on the algorithm's 
performance, which enables the algorithm to find a better solution in each generation of 
optimization. The specific steps are as follows: 

(1) Environment definition. 
The state is defined as the distribution of fitness value of the current population, population 
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diversity or some kind of statistical measure; the action is defined as the parameter by adjusting the 
crossover and mutation operation (such as the change of crossover probability and mutation 
probability; the reward is defined according to the enhancement of the population fitness after the 
operation: if the average fitness of the population is enhanced, a positive reward will be given, and 
the opposite will be given a negative reward. 

(2) Q-value updating formula. 
The optimal action is selected by updating the table, and the updating formula is as follows: 

Q(s, a) = Q(s, a) + α × �r + γ × max�Q(s′, a′) − Q(s, a)��                              (1) 

(3) Selection of actions. 
 -Greedy strategy : In each step of the greedy strategy, the algorithm randomly selects actions 

with a certain probability and chooses the action with the highest current Q-value with a residual 
probability to balance the exploration of new strategies and the utilization of existing knowledge so 
as to improve the learning efficiency and to avoid local optimums. 

(4) Initialization of Q-value table. 
The initialization of the Q-value table depends on the dimensions of the state space and action 

space, and usually all the initial values are set to 0, so that the algorithm can gradually reflect the 
expected benefits of the state-action pairs through updating during the learning process. 

In Q-learning reinforcement learning method, the algorithm gradually learns the optimal action 
strategy by iteratively updating the Q-value table.The change of Q-value reflects the benefit of 
taking different actions in different states. In this paper, the Q-value change graph is plotted using 
Python as shown in Fig. 4: 

 
Figure 4 Plot of Q-value change 

Fig. 4 shows that the Q value of action 1 gradually improves with the increase of states, showing 
a steady growth trend, indicating that action 1 is a more optimal choice in most states. However, the 
Q value of action 2 fluctuates greatly, and although it shows higher payoffs in some states, such as 
state 6, it is not as stable as action 1 as a whole. Action 2 has negative Q values in multiple states, 
indicating that the action is not conducive to the optimization objective in these states. From the 
overall analysis, reinforcement learning gradually guides the algorithm to preferentially choose 
action 1 for higher long-term payoff. 

3. Linear Programming Models for Two Scenarios 
3.1. More than part of the crop is stagnant and wasted 

In this case, the objective is to maximize the total profit for all crops in each year from 2024 to 
2030. For each crop, the sales revenue 𝑅𝑅𝑖𝑖,𝑡𝑡  and the cost of cultivation 𝐶𝐶𝑖𝑖,𝑡𝑡  in the 𝑡𝑡 − 𝑡𝑡ℎ year are 
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defined as follows: 

max∑  2030
t=2024 ∑  N

i=1 �Ri,t − Ci,t�                                                     (2) 

𝑅𝑅𝑖𝑖,𝑡𝑡: Revenue from the sale of the first crop in year 𝑖𝑖, calculated as: 

𝑅𝑅𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝑖𝑖 × 𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑖𝑖 ,∑  2
𝑗𝑗=1 ∑  𝑀𝑀

𝑘𝑘=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 × 𝑌𝑌𝑖𝑖�                                        (3) 

𝐶𝐶𝑖𝑖,𝑡𝑡: The cost of growing crop i in year i, calculated as: 

𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝑖𝑖 ∑  2
𝑗𝑗=1 ∑  𝑀𝑀

𝑘𝑘=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡                                                     (4) 

(a) Objective function with penalty term: 
To penalize the portion of output that exceeds the market demand, an additional penalty term 

𝑃𝑃penalty  can be introduced, which is proportional to the portion of output that exceeds the demand. 
Suppose the penalty coefficient is 𝛼𝛼 and the penalty term is as follows. 

𝑃𝑃penalty = 𝛼𝛼�𝑄𝑄𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑖𝑖�+                                                        (5) 

Where 𝛼𝛼+ denotes that a is taken when a>0 and 0 otherwise, i.e., a penalty is incurred only when 
production exceeds demand. 

(b) Complete objective function. 

𝑚𝑚𝑚𝑚𝑚𝑚∑  2030
𝑡𝑡=2024 ∑  𝑁𝑁

𝑖𝑖=1 �𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝐶𝐶𝑖𝑖,𝑡𝑡 − 𝛼𝛼�𝑄𝑄𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑖𝑖�+�                          (6) 

3.2. Excess is sold at a reduced price of 50% of the 2023 sales price 
In this case, the objective function is also to maximize the total profit, but for the portion of the 

crop in excess of the demand to be sold at 50% of the price, the sales revenue is calculated by the 
formula: 

𝑅𝑅𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝑖𝑖 × 𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑖𝑖 ,𝑄𝑄𝑖𝑖,𝑡𝑡� + 0.5𝑃𝑃𝑖𝑖�𝑄𝑄𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑖𝑖�+                              (7) 

Where 𝑄𝑄𝑖𝑖,𝑡𝑡 = ∑  2
𝑗𝑗=1 ∑  𝑀𝑀

𝑘𝑘=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 × 𝑌𝑌𝑖𝑖: the total production of the first crop in the first year and B 
denotes (𝑎𝑎)+ = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑎𝑎) when a > 0 and 0 otherwise. 

Constraints. 
(1) Variable non-negativity constraint: 
In order to ensure that the acreage is reasonable, the acreage of all crops must be non-negative: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ⩾ 0 ∀𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡                                                            (8) 

(2) Plot planting type restrictions: 
Crops may be planted only on plot types that are suitable for their growth, ensuring that plot 

types and crops are adapted: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 = 0 if i ∉ 𝐿𝐿𝑘𝑘                                                         (9) 

(3) Crop rotation constraints: 
In order to ensure that the land is rotated into fallow, the same crop cannot be planted 

consecutively in the same season on the same plot (starting in 2025): 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 + 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡−1 = 0∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑡𝑡 ⩾ 2025                                      (10) 

(4) Land use constraints: 
The total acreage of crops per parcel shall not exceed the total acreage of the parcel to prevent 

exceeding the carrying capacity of the parcel: 

∑  𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ⩽ 𝑆𝑆𝑘𝑘∀𝑗𝑗,𝑘𝑘, 𝑡𝑡                                                  (11) 

(5) Constraints on the number of plots for crop cultivation: 
In order to control over-concentration of crops, the number of plots planted per crop per season 
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cannot exceed the upper limit: 

∑  𝑁𝑁
𝑘𝑘=1 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ⩽ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡                                                         (12) 

(6) Frequency constraints for legume crops: 
In order to ensure legume crop rotation, each plot should be planted with legumes at least once in 

every three years: 

∑  𝑖𝑖∈𝐵𝐵 ∑  2
𝑗𝑗=1 ∑  𝑀𝑀

𝑘𝑘=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ⩾ 𝑒𝑒∀𝑡𝑡                                                     (13) 

(7) Crop minimum acreage constraints: 
Each crop shall be planted no smaller than the minimum area specified to ensure reasonable 

planting: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ⩾ 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑡𝑡                                                           (14) 

(8) Seasonal planting restrictions: 
Restrictions on seasonal planting of certain crops that can only be planted in one season may not 

be planted again in the second season: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 = 0 If the plot can only grow one season′s worth of crops                   (15) 

(9) Crop diversity constraints: 
Each plot can only grow a maximum number of crops in the same cycle to avoid too many 

monocultures: 

∑  𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ⩽ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∀𝑗𝑗,𝑘𝑘, 𝑡𝑡                                                       (16) 

(10) Minimum planting size constraints: 
Each crop shall not be planted on a parcel less than 20 percent of the parcel area to ensure a 

minimum size for planting: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ≥ 0.2𝑆𝑆𝑘𝑘∀i, 𝑗𝑗, 𝑘𝑘, 𝑡𝑡                                                   (17) 

3.3. Multi-objective optimization strategy 
When using multi-objective optimization strategy, in addition to maximizing the revenue, it is 

also necessary to optimize the planting stability and resource utilization efficiency. Therefore, this 
paper introduces the Pareto frontier multi-objective optimization strategy, and the objective function 
is designed as follows. 

(1) Yield maximization objective. 
Maximize the crop yield on each plot, combining the selling price, yield and planting cost: 

𝑚𝑚𝑚𝑚𝑚𝑚∑  𝑖𝑖,𝑗𝑗 �𝑃𝑃𝑖𝑖,𝑗𝑗 × 𝑌𝑌𝑖𝑖,𝑗𝑗 − 𝐶𝐶𝑖𝑖,𝑗𝑗 × 𝐴𝐴𝑖𝑖,𝑗𝑗�                                              (18) 

(2) Stability Minimization Objective. 
Minimize the volatility of crop acreage and ensure that crop acreage remains stable from year to 

year: 

𝑚𝑚𝑚𝑚𝑚𝑚∑  𝑖𝑖,𝑗𝑗 �𝐴𝐴𝑖𝑖,𝑗𝑗
(𝑡𝑡) − 𝐴𝐴𝑖𝑖,𝑗𝑗

(𝑡𝑡−1)�                                                     (19) 

(3) Objective of maximizing resource use efficiency. 
Maximize resource use efficiency, i.e., the ratio of volume of output to area planted: 

𝑚𝑚𝑚𝑚𝑚𝑚∑  𝑖𝑖,𝑗𝑗
𝑌𝑌𝑖𝑖,𝑗𝑗
𝐴𝐴𝑖𝑖,𝑗𝑗

                                                          (20) 

In order to solve the multi-objective optimization problem, this paper adopts the non-dominated 
sorting genetic algorithm, which gradually approximates the Pareto optimal solution set by 
initializing the population, calculating the values of the three objective functions of revenue, 
stability, and resource utilization efficiency, performing the non-dominated sorting, calculating the 
degree of crowding, selecting the good individuals, and generating a new population through cross 
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mutation. Finally, through many iterations, the non-dominated sorting genetic algorithm can find 
the optimal balance between the three objectives, and output a set of Pareto frontier solutions for 
decision makers to choose. 

4. Solution result 
In order to visually observe the changes in the returns of different processing strategies during 

the optimization process, and to select the appropriate strategy to maximize the returns and control 
the fluctuations this paper plots the returns under Case 1 (stagnant and wasteful) and Case 2 
(partially sold at reduced prices) as shown in Fig.5 and Fig.6. 

 
Figure 5 Profit convergence curve for case 1 

 
Figure 6 Profit convergence curve for case 2 

As can be seen in Fig.5 and Fig.6, in Case 1, with the increase in the number of generation 
selections, the gains show a trend of steady growth, but there is a large gap between the minimum 
gain and the average gain, indicating that there are large fluctuations between different scenarios 
and that individual scenarios outperform others. In Case 2, the price reduction treatment 
significantly reduces the fluctuation of returns, and the gap between the minimum return and the 
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average return is significantly reduced, indicating a more consistent performance among the 
schemes. Overall, the return curve in Case 2 flattens out more quickly, suggesting that the treatment 
is more conducive to maintaining a higher level of return stability over the long term while 
maximizing total returns. 

5. Conclusion 
This paper presents a hybrid optimization model that integrates genetic algorithms and Q-

learning to address the problem of determining optimal crop planting schemes. By optimizing the 
allocation of crop planting areas and dynamically adjusting genetic operations through 
reinforcement learning, the model demonstrates enhanced global search capabilities. 

The introduction of unsalable crops and price reduction scenarios, along with penalty functions 
to control risk, allows the model to account for multiple objectives and constraints, leading to the 
formulation of a multi-objective programming model. The use of the non-dominated sorting genetic 
algorithm enables the identification of Pareto optimal solutions, providing a comprehensive set of 
alternative planting schemes tailored to different scenarios. 

The results obtained show that the proposed model consistently achieves high profitability and 
stability across various conditions. This demonstrates its effectiveness in addressing the 
complexities and uncertainties associated with real-world agricultural systems. Overall, the research 
contributes to the advancement of agricultural optimization methods, offering a practical tool for 
farmers and agricultural planners to make informed decisions regarding crop planting strategies. 
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